|
Computer operating systems (OSes) provide a set of functions needed and used by most application programs on a computer, and the links needed to control and synchronize computer hardware. On the first computers, with no operating system, every program needed the full hardware specification to run correctly and perform standard tasks, and its own drivers for peripheral devices like printers and punched paper card readers. The growing complexity of hardware and application programs eventually made operating systems a necessity for everyday use. == Background == The earliest computers were mainframes that lacked any form of operating system. Each user had sole use of the machine for a scheduled period of time and would arrive at the computer with program and data, often on punched paper cards and magnetic or paper tape. The program would be loaded into the machine, and the machine would be set to work until the program completed or crashed. Programs could generally be debugged via a control panel using toggle switches and panel lights. Symbolic languages, assemblers, and compilers were developed for programmers to translate symbolic program-code into machine code that previously would have been hand-encoded. Later machines came with libraries of support code on punched cards or magnetic tape, which would be linked to the user's program to assist in operations such as input and output. This was the genesis of the modern-day operating system; however, machines still ran a single job at a time. At Cambridge University in England the job queue was at one time a washing line from which tapes were hung with different colored clothes-pegs to indicate job-priority. As machines became more powerful the time to run programs diminished, and the time to hand off the equipment to the next user became large by comparison. Accounting for and paying for machine usage moved on from checking the wall clock to automatic logging by the computer. Run queues evolved from a literal queue of people at the door, to a heap of media on a jobs-waiting table, or batches of punch-cards stacked one on top of the other in the reader, until the machine itself was able to select and sequence which magnetic tape drives processed which tapes. Where program developers had originally had access to run their own jobs on the machine, they were supplanted by dedicated machine operators who looked after the machine and were less and less concerned with implementing tasks manually. When commercially available computer centers were faced with the implications of data lost through tampering or operational errors, equipment vendors were put under pressure to enhance the runtime libraries to prevent misuse of system resources. Automated monitoring was needed not just for CPU usage but for counting pages printed, cards punched, cards read, disk storage used and for signaling when operator intervention was required by jobs such as changing magnetic tapes and paper forms. Security features were added to operating systems to record audit trails of which programs were accessing which files and to prevent access to a production payroll file by an engineering program, for example. All these features were building up towards the repertoire of a fully capable operating system. Eventually the runtime libraries became an amalgamated program that was started before the first customer job and could read in the customer job, control its execution, record its usage, reassign hardware resources after the job ended, and immediately go on to process the next job. These resident background programs, capable of managing multistep processes, were often called monitors or monitor-programs before the term "operating system" established itself. An underlying program offering basic hardware-management, software-scheduling and resource-monitoring may seem a remote ancestor to the user-oriented OSes of the personal computing era. But there has been a shift in the meaning of OS. Just as early automobiles lacked speedometers, radios, and air-conditioners which later became standard, more and more optional software features became standard features in every OS package, although some applications such as data base management systems and spreadsheets remain optional and separately priced. This has led to the perception of an OS as a complete user-system with an integrated graphical user interface, utilities, some applications such as text editors and file managers, and configuration tools. The true descendant of the early operating systems is what is now called the "kernel". In technical and development circles the old restricted sense of an OS persists because of the continued active development of embedded operating systems for all kinds of devices with a data-processing component, from hand-held gadgets up to industrial robots and real-time control-systems, which do not run user applications at the front-end. An embedded OS in a device today is not so far removed as one might think from its ancestor of the 1950s. The broader categories of systems and application software are discussed in the computer software article. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「history of operating systems」の詳細全文を読む スポンサード リンク
|